help...stuck... (Anoura caudifer) - photo by Nathan Muchhala
No, this nectar-feeding bat is not really stuck. (Nor what I would call a dainty eater.) Bats are known to push their heads into bat-flowers to lap up the nectar.
Indeed.
(I love these photos! They're so funny to me!)
A bat will insert its head into the flower - even when its tongue is longer than the flower's tube. It extends its tongue as much as it needs to, then retracts it, lapping the nectar much like a dog drinks water. By pushing its head into the flower, the bat collects lots of pollen on its head and chest, inadvertently transferring it to the next flower.
Moths are also nectar-feeders; however, when a moth drinks nectar, its tongue acts as a straw. So if a moth evolves a tongue longer than the floral tube, it could potentially partake of the flower's nectar without actually pollinating it. Therefore, the flower is always evolving a longer floral tube so that the moth has to actually push its head into the flower, thus picking up the pollen.
This is the background info of Nathan Muchhala's research on the coevolution of one bat species and its flower.
Muchhala studied the tube-lipped nectar bat (Anoura fistulata), a bat that he and two Ecuadorian biologists actually discovered in Ecuador in 2005.
This bat has a very interesting characteristic - its tongue is 1 1/2 times the length of its body! That's twice as long as other nectar-feeding bats. In fact, relative to its body size, it's the longest tongue of any mammal! It is the perfect length (3.3 inches) to reach the nectar of the tropical plant Centropogon nigricans (seen above) for which it is the exclusive pollinator. (When not in use, the bat keeps most of its tongue inside of a structure in its ribcage.) Link to a photo of the bat's tongue on Muchhala's website.
While it's clear that a longer tongue benefits the bat because it enables it to reach the very last bit of nectar, Muchhala wanted to find out how the plant benefits from a longer floral tube. He suspected that the bat would use more force to reach the last bit of nectar of a longer-tubed flower, thus, transferring more pollen.
His research found that flowers with longer floral tubes were indeed better pollinated by the bats - more pollen grains were transferred and received - though not for the reason he thought. Read more about his research in "Going to great lengths: selection for long corolla tubes in an extremely specialized bat–flower mutualism" by Nathan Muchhala and James D. Thomson.
Many thanks to Nathan Muchhala for kindly letting me use his amazing bat photographs in hey little bat!! Link to his page "Bat Pollination in Cloud Forests" which contains more cool photos (and video snippets) of nectar-feeding bats pollinating their bat-flowers. Muchhala is a post-doctoral fellow at the University of Toronto.
Comments
Post a Comment